Costantini's
 "Static Analysis of String Values"
 - A Summary

Koby Picker
Christian M. Maldonado

Overview

- What is Abstract Interpretation?
- The Concrete Domain
- The Abstract Domains
a. Character Inclusion
b. Prefix and Suffix
c. Bricks
d. String Graphs

Abstract Interpretation

Concrete Domain

- Given an alphabet K , a finite set of characters ...
- Strings = Sequence of characters (potentially infinite)

$$
\begin{gathered}
S=K^{*} \text {, where } A^{*} \text { is an ordered sequence of etements in } A \\
\qquad A^{*}=\left\{a_{1} \ldots a_{n}: \forall i \in[1 \ldots n]: a_{i} \in A\right\}
\end{gathered}
$$

Concrete Semantics

Table 2. The concrete semantics, where T_{B} represents that the condition could be evaluated to true or false depending on the string in S_{1} we are considering

$$
\begin{aligned}
& \mathbb{S} \llbracket \text { new String }\left(\mathrm{str}_{\mathrm{s}}\right) \rrbracket()=\{\mathrm{str}\} \\
& \mathbb{S} \llbracket \text { concat } \rrbracket\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)=\left\{\mathrm{s}_{1} \mathrm{~s}_{2}: \mathrm{s}_{1} \in \mathrm{~S}_{1} \wedge \mathrm{~s}_{2} \in \mathrm{~S}_{2}\right\} \\
& \mathbb{S} \llbracket \text { readLine } \rrbracket()=\mathrm{S} \\
& \mathbb{S} \llbracket \text { substring } \rrbracket \rrbracket\left(\mathrm{S}_{1}\right)=\left\{\mathrm{c}_{\mathrm{b}} . . \mathrm{c}_{\mathrm{e}}: \mathrm{c}_{1} . . \mathrm{c}_{\mathrm{n}} \in \mathrm{~S}_{1} \wedge \mathrm{n} \geq \mathrm{e} \wedge \mathrm{~b} \leq \mathrm{e}\right\} \\
& \mathbb{B} \llbracket \text { contains } \mathrm{c}_{\mathrm{c}} \rrbracket\left(\mathrm{~S}_{1}\right)=\left\{\begin{array}{l}
\text { true if } \forall \mathrm{s} \in \mathrm{~S}_{1}: \mathrm{c} \in \operatorname{char}(\mathrm{~s}) \\
\text { false if } \forall \mathrm{s} \in \mathrm{~S}_{1}: \mathrm{c} \notin \operatorname{char}(\mathrm{~s}) \\
\mathrm{T}_{\mathrm{B}} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Overview

- Abstract Interpretation
- The Concrete Domain
- The Abstract Domains
a. Character Inclusion
b. Prefix and Suffix
c. Bricks
d. String Graphs

Character Inclusion - Cl

Cl consists of certainly contained characters and maybe contained characters

We can define the least upper bound and greatest lower bound
\square

Semantics of $C I$

Table 3. The abstract semantics of $\overline{\mathcal{C I}}$

$$
\begin{aligned}
& \overline{\mathbb{S}_{\mathcal{C I}}} \text { [new String(str)]()}=(\text { char }(\text { str }), \text { char }(\text { str })) \\
& \overline{\mathbb{S C I}_{C \mathcal{C}}} \llbracket \text { concat } \rrbracket\left(\left(\overline{\mathrm{C}}_{1}, \overline{\mathrm{MC}}_{1}\right),\left(\overline{\mathrm{C}}_{2}, \overline{\mathrm{MC}}_{2}\right)\right)=\left(\overline{\mathrm{C}}_{1} \cup \overline{\mathrm{C}}_{2}, \overline{\mathrm{MC}}_{1} \cup \overline{\mathrm{MC}}_{2}\right) \\
& \overline{\mathbb{S}_{\mathcal{C I}}} \llbracket \text { readLine】 }()=(\emptyset, \mathrm{K}) \\
& \overline{\mathbb{S} C \mathcal{C l}} \llbracket \text { substring }{ }_{\mathrm{e}}^{\mathrm{e}} \rrbracket\left(\left(\overline{\mathrm{C}}_{1}, \overline{\mathrm{MC}}_{1}\right)\right)=\left(\emptyset, \overline{\mathrm{MC}}_{1}\right) \\
& \overline{\mathbb{B}_{\mathcal{C I}}} \llbracket \text { contains }_{\mathrm{c}} \rrbracket\left(\left(\overline{\mathrm{C}}_{1}, \overline{\mathrm{MC}}_{1}\right)\right)=\left\{\begin{array}{l}
\text { true if } \mathrm{c} \in \overline{\mathrm{C}}_{1} \\
\text { false if } \mathrm{c} \notin \overline{\mathrm{MC}}_{1} \\
\mathrm{~T}_{\mathrm{B}} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Prefix - PR

- String = Sequence of characters which begins with a certain sequence of characters and ends with any string (ϵ included).
- Partial order:

$$
\overline{\mathcal{P R}}=\mathrm{K}^{*} \cup \perp \overline{\mathcal{P R}}
$$

$$
\overline{\mathrm{S}} \leq \overline{\mathcal{P R}} \overline{\mathrm{T}} \Leftrightarrow \overline{\mathrm{~S}}=\perp_{\overline{\mathrm{PR}}} \vee(\forall i \in[0, \operatorname{len}(\overline{\mathrm{~T}})-1]: \operatorname{len}(\overline{\mathrm{T}}) \leq \operatorname{len}(\overline{\mathrm{S}}) \wedge \overline{\mathrm{T}}[\mathrm{i}]=\overline{\mathrm{S}}(\mathrm{i}])
$$

An abstract string S is smaller than T if T is a prefix of S or if S is the bottom of the domain

Prefix (Cont.)

Least Upper Bound:

$\mathrm{U}_{P R}\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}\right)=$ Longest common prefix between two strings.
Greatest Lower Bound:

$$
\Pi_{\overline{\mathcal{P R}}}\left(\overline{\mathrm{S}}_{1}, \overline{\mathrm{~S}}_{2}\right)= \begin{cases}\overline{\mathrm{S}}_{1} & \text { if } \overline{\mathrm{S}}_{1} \leq \overline{\mathcal{P \mathcal { R }}} \overline{\mathrm{S}}_{2} \\ \overline{\mathrm{~S}}_{2} & \text { if } \overline{\mathrm{S}}_{2} \leq \overline{\overline{\mathcal{R}}} \overline{\mathrm{S}}_{1} \\ \perp \overline{\mathcal{P R}} & \text { otherwise }\end{cases}
$$

Semantics of \mathscr{P} K

Table 4. The abstract semantics of $\overline{\mathcal{P R}}$

$$
\begin{aligned}
& \overline{\mathbb{S}_{\mathcal{P} \mathcal{R}}} \llbracket \text { new String }(\operatorname{str}) \rrbracket()=\mathrm{str} \\
& \overline{\mathbb{S}_{\mathcal{P} \mathcal{R}}} \llbracket \text { concat } \rrbracket\left(\overline{\mathrm{p}}_{1}, \overline{\mathrm{p}}_{2}\right)=\overline{\mathrm{p}}_{1} \\
& \overline{\mathbb{S}_{\mathcal{P} \mathcal{R}}} \llbracket \text { readLine } \rrbracket()=\epsilon \\
& \overline{\mathbb{S}_{\mathcal{P} \mathcal{R}}} \llbracket \text { substring } \\
& \mathrm{e} \rrbracket(\overline{\mathrm{p}})= \begin{cases}\overline{\mathrm{p}}[\mathrm{~b} \cdots \mathrm{e}-1] & \text { if } \mathrm{e} \leq \operatorname{len}(\overline{\mathrm{p}}) \\
\overline{\mathrm{b}} \cdots \operatorname{len}(\overline{\mathrm{p}})-1] & \text { if } \mathrm{e}>\operatorname{len}(\overline{\mathrm{p}}) \wedge \mathrm{b}<\operatorname{len}(\overline{\mathrm{p}}) \\
\epsilon & \text { otherwise }\end{cases} \\
& \overline{\mathbb{B}_{\mathcal{P R}} \llbracket \text { contains }_{\mathrm{c}} \rrbracket(\overline{\mathrm{p}})= \begin{cases}\text { true if } \mathrm{c} \in \operatorname{char}(\overline{\mathrm{p}}) & \\
\mathrm{T}_{\mathrm{B}} & \text { otherwise }\end{cases} }
\end{aligned}
$$

Suffix - SF

- String $=$ Sequence of characters which ends with a certain sequence of characters.

$$
\overline{\mathcal{S U}}=\mathrm{K}^{*} \cup \perp \overline{\mathcal{S u}}
$$

- The Suffix abstract domain is nearly analogous to the Prefix abstraction
- Partial Order:

$$
\overline{\mathrm{S}} \leq \overline{\mathcal{S u}}^{\overline{\mathrm{T}} \Leftrightarrow \overline{\mathrm{~S}}=\perp_{\overline{\mathcal{S u}}} \vee(\forall \mathrm{i} \in[0, \operatorname{len}(\overline{\mathrm{~T}})-1]: \operatorname{len}(\overline{\mathrm{T}}) \leq \operatorname{len}(\overline{\mathrm{S}}) \wedge} \overline{\overline{\mathrm{T}}[\mathrm{i}]=\overline{\mathrm{S}}[\mathrm{i}+\operatorname{len}(\overline{\mathrm{S}})-\operatorname{len}(\overline{\mathrm{T}})])}
$$

Suffix (Cont.)

Least Upper Bound:

$\mathrm{U}_{s U}\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}\right)=$ Longest common suffix between two strings.
Greatest Lower Bound:

$$
\begin{array}{cc}
\Pi_{S U}\left(S_{1}, S_{2}\right)= & \text { Smallest suffix } \\
\perp_{S U} & \text { if they are comparable } \\
\text { if they are not comparable }
\end{array}
$$

Semantics of $S \mathcal{U}$

(a) The abstract semantics of su

Bricks - BR

Significantly, Bricks capture both inclusion and order
An example brick:

\square

Bricks - BR - Definition and partial order

Definition: $\boldsymbol{B R}=B^{*}$, that is, the set of all finite sequences composed of bricks
Partial order between single bricks:

Bricks - BR - Least upper bound

Definition: $\boldsymbol{B R}=B^{*}$, that is, the set of all finite sequences composed of bricks
LUB between single bricks:
\square
The LUB is the union of each brick's set of strings, and the union of their repetition intervals.

Bricks - BR - Least upper bound example

$\left.[\text { star, grape }]^{0,1},[\text { grape }]^{1,1} \quad[\text { fruit }]^{0,1},[\text { tomato }]^{0,1}\right)$

$$
=\quad[\text { star, grape }]^{0,1}[\text { fruit, tomato }]^{0,1}
$$

Derives ε, "starfruit", "grapefruit", "grapetomato", "startomato", and each singleton string

Bricks - BR - Widening operator

The widening operator: Given $n=\max \left(\operatorname{len}\left(\mathrm{L}_{1}\right)\right.$, $\left.\operatorname{len}\left(\mathrm{L}_{2}\right)\right)$, define constants $\mathrm{k}_{\mathrm{L}}, \mathrm{k}_{\mathrm{S}^{\prime}}$ k_{I}

$$
\begin{aligned}
& \text { where } w\left(\bar{L}_{1}, \bar{L}_{2}\right)=\left[\overline{\mathcal{B}}_{1}^{\text {new }}\left(\bar{L}_{1}[1], \overline{\mathrm{L}}_{2}[1]\right) ; \overline{\mathcal{B}}_{2}^{\text {new }}\left(\overline{\mathrm{L}}_{1}[2], \overline{\mathrm{L}}_{2}[2]\right) ; \ldots ; \overline{\mathcal{B}}_{n}^{\text {new }}\left(\overline{\mathrm{L}}_{1}[\mathrm{n}], \overline{\mathrm{L}}_{2}[\mathrm{n}]\right)\right] \text {, }
\end{aligned}
$$

Bricks - BR-Semantics

Table 5. The abstract semantics of $\overline{\mathcal{B R}}$

$$
\begin{aligned}
& \overline{\mathbb{S}_{\mathcal{B R}}} \llbracket \text { new } \operatorname{String}(\text { str }) \rrbracket()=[\{\text { str }\}]^{1,1} \\
& \overline{\mathbb{S}_{\mathcal{B R}}} \llbracket \text { concat } \rrbracket\left(\overline{\mathrm{b}}_{1}, \overline{\mathrm{~b}}_{2}\right)=\overline{\text { normBricks }}\left(\overline{\operatorname{concatList}}\left(\overline{\mathrm{b}}_{1}, \overline{\mathrm{~b}}_{2}\right)\right) \\
& \overline{\mathbb{S}_{\mathcal{B R}}} \llbracket \text { readLine } \rrbracket()=\top_{\overline{\mathcal{B R}}} \\
& \overline{\mathrm{T}}^{\prime}=\{\overline{\mathrm{t}} \text {.substring(b, e) } \forall \sqrt[\mathrm{t}]{\mathrm{t}} \in \overline{\mathrm{~T}}\} \\
& \overline{\mathbb{S}_{\mathcal{B R}}} \llbracket \text { substring }{ }_{\mathrm{b}}^{\mathrm{e}} \rrbracket(\overline{\mathrm{~b}})= \begin{cases}{\left[\overline{\mathrm{T}}^{\prime}\right]^{1,1}} & \text { if } \overline{\mathrm{b}}[0]=[\overline{\mathbf{T}}]^{1,1} \wedge \forall \overline{\mathrm{t}} \in \overline{\mathrm{~T}}: \operatorname{len}(\overline{\mathrm{t}}) \geq \mathrm{e} \\
\mathrm{~T}_{\overline{\mathcal{B R}}} & \text { otherwise }\end{cases} \\
& \overline{\mathbb{B}_{\mathcal{B R}}} \llbracket \text { contains }_{\mathrm{c}} \rrbracket(\overline{\mathrm{~b}})=\left\{\begin{array}{l}
\text { true if } \exists \overline{\mathrm{B}} \in \overline{\mathrm{~b}}: \overline{\mathrm{B}}=[\overline{\mathrm{T}}]^{m, M} \wedge 1 \leq m \leq M \wedge(\forall \overline{\mathrm{t}} \in \overline{\mathrm{~T}}: c \in \operatorname{char}(\overline{\mathrm{t}})) \\
\text { false if } \forall[\overline{\mathrm{T}}]^{\mathrm{m}, \mathrm{M}} \in \overline{\mathrm{~b}}, \forall \overline{\mathrm{t}} \in \overline{\mathrm{~T}}: \mathrm{c} \notin \operatorname{char}(\overline{\mathrm{t}}) \\
\mathrm{T}_{\mathrm{B}} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Type Graphs

- A type graph T is triplet $\left(N, A_{F}, A_{B}\right)$ where $\left(N, A_{F}\right)$ is a rooted tree whose arcs in A_{F} are called forward arcs, and A_{B} is a restricted class of arcs, backward arcs, superimposed on ($\mathrm{N}, \mathrm{A}_{\mathrm{F}}$).
- Suitable for representing a set of terms
- A node $\mathrm{n} \in \mathrm{N}$ can can be in one of three classes:
a. Simple
b. Functor
c. OR
- n / i denotes the i-th son of node n, and the set of sons of a node n is then denoted as $\{\mathrm{n} / 1, \ldots, \mathrm{n} / \mathrm{k}\}$

String Graphs - SG

- Adaptation of a Type Graph to strings
- Differences:
a. Simple nodes have labels from the set $\{m a x, \perp, \epsilon\} \cup K$
b. The only functor is concat

Fig. 5. An example of string graph

- $S G=\mathscr{N S G}$, where $\mathcal{N S S}$ is the set of all Normal String Graphs.
- $\perp_{S G}=$ A string graph made by one bottom node
- $\mathrm{T}_{S G}=$ A string graph made by only one node, a max-node
- Partial order:

$$
\overline{\mathrm{T}}_{1} \leq \overline{\mathcal{S g}}^{\overline{\mathrm{T}}_{2} \Leftrightarrow \overline{\mathrm{~T}}_{1}=\perp_{\overline{\mathcal{S g}}} \vee\left(\leq\left(\overline{\mathrm{n}}_{0}, \overline{\mathrm{~m}}_{0}, \emptyset\right): \overline{\mathrm{n}}_{0}=\overline{\operatorname{root}}\left(\overline{\mathrm{T}}_{1}\right) \wedge \overline{\mathrm{m}}_{0}=\overline{\operatorname{root}}\left(\overline{\mathrm{T}}_{2}\right)\right)}
$$

String Graphs - SG (Cont.)

Least Upper Bound:

$$
\mathrm{U}_{S G}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=\text { normStringGraph }\left(\mathrm{OR}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)\right)
$$

Semantics of $S G$

Table 6. The abstract semantics of $\overline{\mathcal{S G}}$
$\overline{\mathbb{S}_{\mathcal{S G}}} \llbracket$ new String $($ str $) \rrbracket()=$ concat $/ \mathrm{k}\{\operatorname{str}[\mathrm{i}]: \mathrm{i} \in[0, \mathrm{k}-1]\}$
$\mathbb{S}_{\mathcal{S G}} \llbracket$ concat $\rrbracket\left(\overline{\mathrm{t}}_{1}, \overline{\mathrm{t}}_{2}\right)=\overline{\text { normStringGraph }}\left(\right.$ concat $\left./ 2\left\{\overline{\mathrm{t}}_{1}, \overline{\mathrm{t}}_{2}\right\}\right)$
$\overline{\mathbb{S}_{\mathcal{S G}}} \llbracket$ readLine $\rrbracket()=\mathrm{T}_{\overline{\mathcal{S G}}}$
$\overline{\mathbb{S}_{\mathcal{S G}}} \llbracket$ substring ${ }_{\mathrm{E}}^{\mathrm{e}} \rrbracket(\overline{\mathrm{t}})=\left\{\begin{array}{l}\overline{\mathrm{res}} \quad \text { if } \overline{\operatorname{root}}(\overline{\mathrm{t}})=\text { concat } / \mathrm{k} \wedge \forall \mathrm{i} \in[0, \mathrm{e}-1]: \overline{\operatorname{lb}}(\overline{\operatorname{root}}(\overline{\mathrm{t}}) / \mathrm{i}) \in \mathrm{K} \\ \mathrm{T} \overline{\mathcal{S G}} \text { otherwise }\end{array}\right.$
$\overline{\mathbb{B}_{\mathcal{S G}}} \llbracket$ contains $_{\mathrm{c}} \rrbracket(\overline{\mathrm{t}})=\left\{\begin{array}{l}\text { true if } \exists \overline{\mathrm{m}} \in \overline{\mathrm{t}}: \overline{\mathrm{m}}=\text { concat } / \mathrm{k} \wedge \mathrm{OR} \notin \overline{\operatorname{path}}(\overline{\text { root }}, \overline{\mathrm{m}}) \wedge \\ \quad \exists \mathrm{i}: \overline{l b}(\overline{\mathrm{~m}} / \mathrm{i})=\mathrm{c} \\ \text { false if } \nexists \overline{\mathrm{n}} \in \overline{\mathrm{t}}: \overline{l b}(\overline{\mathrm{n}})=\max \vee \overline{l b}(\overline{\mathrm{n}})=\mathrm{c} \\ \mathrm{T}_{\mathrm{B}} \text { otherwise }\end{array}\right.$

Conclusion

- Two axes of precision in string value analyzers:
- Character containment in a string
- Position in the string
- Character inclusion (CI)
- Considers character containment
- Discards the order
- Prefix ($P R$) and Suffix ($S U$)
- Collect only partial information about character containment
- Consider order only in the initial/final segment of the string

Conclusion (Cont.)

- Bricks (BR)
- Considers character containment
- Considers order inside the string
- String Graph ($(G G)$
- Considers character containment
- Considers order inside the string

So B BRand $S G$ seem to be the most precise.

Fig. 7. The hierarchy of abstract domains

Reference

