
Costantini’s
“Static Analysis of String Values”

- A Summary

Koby Picker
Christian M. Maldonado

Overview
● What is Abstract Interpretation?
● The Concrete Domain
● The Abstract Domains

a. Character Inclusion
b. Prefix and Suffix
c. Bricks
d. String Graphs

Abstract Interpretation

Concrete Domain ℘
(D)

Abstract Domain Ā

Abstraction Function αĀ

Concretization Function
γĀ

Galois Connection

Concrete Domain
● Given an alphabet K, a finite set of characters …

● Strings = Sequence of characters (potentially infinite)

S = K* , where A* is an ordered sequence of elements in A

A* = {a1 … an : ∀i ∈ [1… n] : ai ∈ A}

Concrete Semantics

Overview
● Abstract Interpretation
● The Concrete Domain
● The Abstract Domains

a. Character Inclusion
b. Prefix and Suffix
c. Bricks
d. String Graphs

Character Inclusion - CI
CI consists of certainly contained characters and maybe contained characters

CI is partially ordered

We can define the least upper bound and greatest lower bound

CI = {(C, MC): C, MC ∈ ℘(K) ∧ C ⊆ MC}
∪⊥

CI

(C1, MC1) ≤
CI

 (C2, MC2) ⇔ (C1, MC1) = ⊥
CI

 ∨ (C1 ⊇ C2 ∧ MC1 ⊆
MC2)

⊔
CI

((C1, MC1), (C2, MC2)) = (C1 ∩ C2, MC1 ∪ MC2)

⊓
CI

((C1, MC1),(C2, MC2)) = (C1 ∪ C2, MC1 ∩ MC2)

Semantics of CI

Prefix - PR
● String = Sequence of characters which begins with a certain sequence of

characters and ends with any string (included).

● Partial order:

An abstract string S is smaller than T if T is a prefix of S or if S is the bottom of
the domain

Top =
Bottom = ⊥PR

Prefix (Cont.)
Least Upper Bound:

பPR (S1, S2)= Longest common prefix between two strings.

Greatest Lower Bound:

Semantics of PR

Suffix - SF
● String = Sequence of characters which ends with a certain sequence of

characters.

● The Suffix abstract domain is nearly analogous to the Prefix abstraction
● Partial Order:

Suffix (Cont.)
Least Upper Bound:

பSU (S1, S2)= Longest common suffix between two strings.

Greatest Lower Bound:

⊓SU (S1, S2) = Smallest suffix if they are comparable

 ⊥SU
 if they are not comparable

Semantics of SU

Bricks - BR
Significantly, Bricks capture both inclusion and order

An example brick:

Representing strings with bricks:

B = [℘(S)]min,max

[{“mo”, “de”}] 1,2 = {mo, de, momo, dede, mode, demo}

[{“straw”}]0,1[{“berry”}]1,1 = {berry, strawberry}

Definition: BR = B* , that is, the set of all finite sequences composed of bricks

Partial order between single bricks:

To be considered smaller, the strings within the brick must be a subset of the
other brick, and the repetition interval must be narrower (or the same).

Partial order between lists of bricks L1 and L2 :

Bricks - BR - Definition and partial order

[C1]min1,max1 ≤B [C2]min2,max2 ⇔
(C1 ⊆ C2 ∧ min1 ≥ min2 ∧ max1 ≤ max2)

∨ ([C2]min2,max2 = ⊤B) ∨ (C1
min1,max1 = ⊥B)

L1 ≤BR L2 ⇔ (L2 = ⊤BR) ∨ (L1 = ⊥BR) ∨ (∀i ∈ [1, n] : L1[i] ≤B L2[i])

Definition: BR = B* , that is, the set of all finite sequences composed of bricks

LUB between single bricks:

The LUB is the union of each brick’s set of strings, and the union of their
repetition intervals.

LUB between lists of bricks L1 and L2 :

Bricks - BR - Least upper bound

பB ([S1]m1,M1, [S2]m2,M2) =[S1 ∪ S2]min(m1,m2), max(M1,M2)

பBR(L1, L2) = LR[1]LR[2] ... LR[n],
where ∀i ∈ [1, n] : LR[i] = ⊔B(L1[i], L2[i])

L1= [star, grape]0,1[fruit]0,1 L2 = [grape]1,1 [tomato]0,1

பBR(L1, L2) = LR[1]LR[2] = ⊔B(L1[1], L2[1])⊔B(L1[2], L2[2])

= ⊔B([star, grape]0,1, [grape]1,1) ⊔B([fruit]0,1, [tomato]0,1)

= [star, grape]0,1[fruit, tomato]0,1

Derives ε, “starfruit”, “grapefruit”, “grapetomato”, “startomato”, and each

singleton string

Bricks - BR - Least upper bound example
பB ([S1]m1,M1, [S2]m2,M2) =[S1 ∪ S2]min(m1,m2), max(M1,M2)

பBR(L1, L2) = LR[1]LR[2] ... LR[n],
where ∀i ∈ [1, n] : LR[i] = ⊔B(L1[i], L2[i])

The widening operator: Given n = max(len(L1), len(L2)) , define constants kL, kS,
kI

Bricks - BR - Widening operator

Bricks - BR - Semantics

Type Graphs
● A type graph T is triplet (N, AF, AB) where (N, AF) is a rooted tree whose

arcs in AF are called forward arcs, and AB is a restricted class of arcs,
backward arcs, superimposed on (N, AF).

● Suitable for representing a set of terms
● A node n ∈ N can can be in one of three classes:

a. Simple
b. Functor
c. OR

● n/i denotes the i-th son of node n, and the set of sons of a node n is then
denoted as {n/1,..., n/k}

String Graphs - SG
● Adaptation of a Type Graph to strings
● Differences:

a. Simple nodes have labels from the set {max, ⊥, } ∪ K
b. The only functor is concat

● SG = NSG, where NSG is the set of all Normal String Graphs.
● ⊥

SG
 = A string graph made by one bottom node

● T
SG

 = A string graph made by only one node, a max-node
● Partial order:

String Graphs - SG (Cont.)
Least Upper Bound:

பSG (T1, T2) = normStringGraph (OR(T1, T2))

Semantics of SG

res = concat/(e − b){(root(t)/i) : i ∈ [b, e − 1]}) ← Substring

Conclusion
● Two axes of precision in string value analyzers:

○ Character containment in a string
○ Position in the string

● Character inclusion (CI)
○ Considers character containment
○ Discards the order

● Prefix (PR) and Suffix (SU)
○ Collect only partial information about character containment
○ Consider order only in the initial/final segment of the string

Conclusion (Cont.)

● Bricks (BR)
○ Considers character containment
○ Considers order inside the string

● String Graph (SG)
○ Considers character containment
○ Considers order inside the string

So BR and SG seem to be the most
precise.

Reference
[1] Costantini, Giulia, Pietro Ferrara, and Agostino Cortesi. "Static analysis of
string values." In Formal Methods and Software Engineering, pp. 505-521.
Springer Berlin Heidelberg, 2011.

[2] Janssens, Gerda, and Maurice Bruynooghe. "Deriving descriptions of
possible values of program variables by means of abstract interpretation."The
Journal of Logic Programming 13, no. 2 (1992): 205-258.

[3] Lu, Lunjin. “The LPANE/SANE analysis engines.” 1999.

